Search results

Search for "gallic acid" in Full Text gives 10 result(s) in Beilstein Journal of Nanotechnology.

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • acid was covalently grafted on the surface of SiO2 nanoparticles. SiO2 nanoparticles provided thermal stability and chemical inertness while gallic acid provided chain-breaking antioxidant properties. By grafting antioxidant compounds on SiO2 nanoparticles, the deterioration can be decreased [59
  • ]. Similarly, gallic acid was covalently grafted on magnetite with an average size of 5 and 8 nm. The functionalization of ultrasmall magnetite with gallic acid increased free radical scavenging two- to fourfold compared to free magnetite [60]. Centurion et al. investigated the assembly of natural polyphenolic
  • nm that display chain-breaking antioxidant activities [57][58]. The incorporation of nanomaterials and natural chain-breaking antioxidants is one of the most efficient strategies to combine the advantages of nanomaterials and natural antioxidants. For example, the natural phenolic compound gallic
PDF
Album
Review
Published 12 Apr 2024

In search of cytotoxic selectivity on cancer cells with biogenically synthesized Ag/AgCl nanoparticles

  • Mitzi J. Ramírez-Hernández,
  • Mario Valera-Zaragoza,
  • Omar Viñas-Bravo,
  • Ariana A. Huerta-Heredia,
  • Miguel A. Peña-Rico,
  • Erick A. Juarez-Arellano,
  • David Paniagua-Vega,
  • Eduardo Ramírez-Vargas and
  • Saúl Sánchez-Valdes

Beilstein J. Nanotechnol. 2022, 13, 1505–1519, doi:10.3762/bjnano.13.124

Graphical Abstract
  • , agricultural residues, such as fruit peels, have the potential to be used for the development of nanoparticles [10][11][12][13]. Pineapple peel has also been valued as a good source of silver salt-reducing compounds. Pineapple peel extracts have been reported to contain polyphenols such as gallic acid
  • its flavonoid content. Li et al. [14] reported that some phenolic compounds, such as gallic acid, catechin, epicatechin, and ferulic acid are present in pineapple peel extracts. On the other hand, Steingass et al. [19] reported an extensive phytochemical study, by HPLC-DAD-ESI-MSn and GM-MS, of
  • flavonoids, terpenes, tannins, and gallic acid; 1230 cm−1 corresponds to the tension of tertiary alcohols and flavonoids; 1026 cm−1 is related to C–O vibration in tannins and flavonoids; and 918 cm−1, 865 cm−1, and 705 cm−1 correspond to out-of-plane C–H vibration in gallic acid and catechin. According to
PDF
Album
Full Research Paper
Published 13 Dec 2022

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • systems. Guar-gum-fabricated gold nanoparticles (GA-GNPs) in a DES were synthesized for the use as X-ray contrast agent. The precursors for the DES used were choline chloride, gallic acid and glycerol. The X-ray attenuation coefficient of GA-GNPs was three times higher than that of the clinically used
PDF
Album
Review
Published 18 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
PDF
Album
Review
Published 25 Jan 2021

Scavenging of reactive oxygen species by phenolic compound-modified maghemite nanoparticles

  • Małgorzata Świętek,
  • Yi-Chin Lu,
  • Rafał Konefał,
  • Liliana P. Ferreira,
  • M. Margarida Cruz,
  • Yunn-Hwa Ma and
  • Daniel Horák

Beilstein J. Nanotechnol. 2019, 10, 1073–1088, doi:10.3762/bjnano.10.108

Graphical Abstract
  • Abstract Maghemite (γ-Fe2O3) nanoparticles obtained through co-precipitation and oxidation were coated with heparin (Hep) to yield γ-Fe2O3@Hep, and subsequently with chitosan that was modified with different phenolic compounds, including gallic acid (CS-G), hydroquinone (CS-H), and phloroglucinol (CS-P
  • modified with polymers via a layer-by-layer (LbL) technique [17]. Two naturally derived polymers, namely, anionic heparin and cationic chitosan, were used as nanoparticle coatings, and three phenolic compounds, including hydroquinone, phloroglucinol, and gallic acid, differing in the number of hydroxy
  • . Moreover, the radical scavenging ability of CS-P was closer to that of CS-H than that of CS-G. The antioxidant properties of hydroquinone, which has only two hydroxy groups attached to the aromatic ring, were relatively low, whereas those of gallic acid, which has three hydroxy groups and a carbonyl group
PDF
Album
Full Research Paper
Published 20 May 2019

Performance of natural-dye-sensitized solar cells by ZnO nanorod and nanowall enhanced photoelectrodes

  • Saif Saadaoui,
  • Mohamed Aziz Ben Youssef,
  • Moufida Ben Karoui,
  • Rached Gharbi,
  • Emanuele Smecca,
  • Vincenzina Strano,
  • Salvo Mirabella,
  • Alessandra Alberti and
  • Rosaria A. Puglisi

Beilstein J. Nanotechnol. 2017, 8, 287–295, doi:10.3762/bjnano.8.31

Graphical Abstract
  • cm−1. 2-Hydroxy-1,4-napthaquinone (C10H6O3), frequently called lawsone [15][18], is one of the constituents of the natural dye henna in addition to other compounds, such as gallic acid, sterols, resin, tannin and coumarins [19]. Lawsone (Figure 4b), the main component of henna extract, has been used
PDF
Album
Full Research Paper
Published 30 Jan 2017

Voltammetric determination of polyphenolic content in pomegranate juice using a poly(gallic acid)/multiwalled carbon nanotube modified electrode

  • Refat Abdel-Hamid and
  • Emad F. Newair

Beilstein J. Nanotechnol. 2016, 7, 1104–1112, doi:10.3762/bjnano.7.103

Graphical Abstract
  • Refat Abdel-Hamid Emad F. Newair Unit of Electrochemistry Applications (UEA), Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt 10.3762/bjnano.7.103 Abstract A simple and sensitive poly(gallic acid)/multiwalled carbon nanotube modified glassy carbon electrode (PGA
  • /MWCNT/GCE) electrochemical sensor was prepared for direct determination of the total phenolic content (TPC) as gallic acid equivalent. The GCE working electrode was electrochemically modified and characterized using scanning electron microscope (SEM), cyclic voltammetry (CV), chronoamperometry and
  • chronocoulometry. It was found that gallic acid (GA) exhibits a superior electrochemical response on the PGA/MWCNT/GCE sensor in comparison with bare GCE. The results reveal that a PGA/MWCNT/GCE sensor can remarkably enhance the electro-oxidation signal of GA as well as shift the peak potentials towards less
PDF
Album
Full Research Paper
Published 29 Jul 2016

Green and energy-efficient methods for the production of metallic nanoparticles

  • Mitra Naghdi,
  • Mehrdad Taheran,
  • Satinder K. Brar,
  • M. Verma,
  • R. Y. Surampalli and
  • J. R. Valero

Beilstein J. Nanotechnol. 2015, 6, 2354–2376, doi:10.3762/bjnano.6.243

Graphical Abstract
PDF
Album
Review
Published 10 Dec 2015

A catechol biosensor based on electrospun carbon nanofibers

  • Dawei Li,
  • Zengyuan Pang,
  • Xiaodong Chen,
  • Lei Luo,
  • Yibing Cai and
  • Qufu Wei

Beilstein J. Nanotechnol. 2014, 5, 346–354, doi:10.3762/bjnano.5.39

Graphical Abstract
  • laccase–Nafion–ECNFs/GCE exhibits a quite outstanding analytical performance and this new sensor could be useful in the detection of catechol. Interferences and biosensor stability Catechol and some other phenolic compounds, including catechin, epicatechin, gallic acid, guaiacol, phenol and aminophenol
  • (pH 5.5). Inset: A magnification of the third addition of catechol (a); The linear calibration curve of the current response on the catechol concentration (b). Relative responses of the laccase–Nafion–ECNFs/GCE for different phenolic compounds (catechol, catechin, epicatechin, gallic acid, guaiacol
PDF
Album
Full Research Paper
Published 24 Mar 2014
Other Beilstein-Institut Open Science Activities